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Purpose. The concept of molecular factor computing (MFC)-based predictive spectroscopy was

demonstrated here with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype

instrument.

Methods. Molecular computing of vectors for transformation matrices enabled spectra to be represented

in a desired coordinate system. New coordinate systems were selected to reduce the dimensionality of

the spectral hyperspace and simplify the mechanical/electrical/computational construction of a new MFC

spectrometer employing transmission MFC filters. A library search algorithm was developed to calculate

the chemical constituents of the MFC filters. The prototype instrument was used to collect data from 39

ethanol-in-water mixtures (range 0–14%). For each sample, four different voltage outputs from the

detector (forming two factor scores) were measured by using four different MFC filters. Twenty samples

were used to calibrate the instrument and build a multivariate linear regression prediction model, and

the remaining samples were used to validate the predictive ability of the model.

Results. In engineering simulations, four MFC filters gave an adequate calibration model (r2 = 0.995,

RMSEC = 0.229%, RMSECV = 0.339%, p = 0.05 by f test). This result is slightly better than a

corresponding PCR calibration model based on corrected transmission spectra (r2 = 0.993,

RMSEC = 0.359%, RMSECV = 0.551%, p = 0.05 by f test). The first actual MFC prototype gave an

RMSECV = 0.735%.

Conclusion. MFC was a viable alternative to conventional spectrometry with the potential to be more

simply implemented and more rapid and accurate.

KEY WORDS: chemometrics; genetic algorithm; multivariate analysis; near infrared spectroscopy
(NIR); optical computing.

INTRODUCTION

Near infrared spectroscopy (NIR) has become an
important process analytical method for simultaneous multi-
component chemical analysis. NIR has found many applica-
tions in process environments and in measurements in the
biotechnology and pharmaceutical industries (1–6), where
NIR spectroscopy provides online, nondestructive and non-
invasive sensing. In September of 2004, the US FDA released
a Guidance for Industry, PAT—A Framework for Innovative
Pharmaceutical Development, Manufacturing, and Quality
Assurance (7,8). This guidance is designed to facilitate
innovation in, process development and quality assurance.
Process Analytical Technology (PAT) will help in better
design, monitor and control of pharmaceutical manufacturing
process by integrating multivariate modeling, sensors design

and process optimization with the goal of ensuring final
product quality (9).

Industrial environments are usually less friendly to
analytical instrumentation than research laboratories. Filter
instruments are usually much more stable and rugged than
their dispersive or interferometric counterparts, making them
ideally suited for the harsh conditions found in industrial
environments (10,11).

Multivariate calibration is a well-established tool in
chemometrics for analysis of NIR, UV-Visible, and Raman
spectra. Conventional measurement of chemical or physical
properties from spectra is carried out by constructing a
predictive model (12–14). Two of the most commonly used
methods to construct a predictive model are partial least
squares (PLS) and principal component regression (PCR). In
a conventional spectrometer with typical chemometrics, data
collection and processing of raw data can be time consuming
and computationally expensive, especially when spatial
relationships (image data) are required. Methods for select-
ing small but highly relevant variables to represent the
original data in a reduced coordinate space and methods for
integrated sensing and processing (ISP) are therefore receiv-
ing much attention (14,15).

ISP aims to design and optimize sensing systems that
integrate the traditionally independent units of sensing,
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signal processing, communication and targeting. By employ-
ing ISP, computational complexity within traditional sensing
system has been substantially reduced through determining
efficient low-dimensional representations of those sensing
problems that were originally posed in high-dimensional
settings by traditional sensing architecture. Successful ISP is
expected to yield entirely new ways of designing and
operating sensor systems (16).

One approach currently being investigated to simplify
both instrumentation and computational analysis involves
optical pattern encoding (17). This technique involves
tailoring the optical spectrum of filters to encode high level
information about the samples in sensing stage. Theoretical
treatment of this methodology can be found in the literature
(18,19). Myrick et al. have demonstrated some practical
applications of this methodology in UV-visible and NIR
spectroscopy (20–28). Encoding applications are based on the
fabrication of thin film solid-state optical filters, termed
multivariate optical elements (MOEs). MOEs are designed
to replicate the multivariate regression pattern by transmit-
ting and reflecting weighted optical signals over a broad
wavelength band.

Recent publications from our laboratory have offered an
alternative approach for spectral encoding (29,30). Molecular
absorption filters can be used as mathematical factors in
spectral encoding to generate a factor-analytic optical
calibration in a high-throughput spectrometer, which we
term molecular factor computing (MFC). The molecules in
the filter effectively compute the calibration function by
weighting the signals received at each wavelength over a
broad range of wavelengths (see Fig. 1). Given a set of
training spectra collected at all available wavelengths (see
Fig. 1 left), it is possible to rationally select molecular filter
materials to perform a factor analysis procedure like
principal component analysis (PCA) (see Fig. 1 right). PCA
is designed to maximize the signals from the spectral regions
with the most variability by most heavily weighting them
(loadings line in Fig. 1 left). However, PC loadings heavily
weight wavelength information in the positive and negative
direction, which is difficult to implement optically with
molecular absorbance filters. MFC uses absolute values in
MFs, so two filters are required for each PC, one for the
positive loadings (MF1) and one for the negative loadings
(MF2). The filter materials are selected by examining their

spectra. The transmission spectrum (%T) of the filter
material should be as similar as possible to the absolute
value of the loadings spectrum being targeted. Bandpass
filters are selected to ignore regions of the spectrum where
there is no difference between the training spectra, as extra
photons in those regions simply saturate the detector or add
noise without providing any additional signal. The MF filters
do not have to be featureless in the areas away from their
peaks in Fig. 1 as long as bandpass filters (or prisms or
gratings) are used to wipe out the transmission peaks in
undesired areas.

One or more molecular filters are used in an MFC-based
spectrometer to produce detector signals correlated to
desired sample information. Advantages of this new ap-
proach over conventional spectroscopy include significantly
reducing the computational demand (the integrated sensing
and processing, or ISP, advantage), shorter data collection
and analysis time with higher signal-to-noise ratio (S/N)
(especially for imaging spectrometry, through the Fellgett
advantage), higher optical throughput (the Jacquinot advan-
tage), and more rugged instrumentation with a considerably
lower cost.

This report describes the instrumentation and applica-
tion of a molecular factor computing-based spectrometer.
Such a spectrometer may be particularly useful in applica-
tions where real-time video analyses of remote sensing data
are required. In such cases, molecular filters placed in front
of near-IR cameras would produce images in which the
intensities were proportional to the factor scores, without the
need for additional computation. Ethanol in water mixtures
were selected as training and validation samples to design
molecular filters that would test the concept of MFC-based
spectroscopy. Ethanol is used in liquid pharmaceuticals to
enhance solubility, for example. Ethanol is also sometimes
abused in the general population. Sensing alcohol in the
environment is necessary in such an application to evaluate
the effectiveness of pharmacotherapy or other therapies for
alcohol abuse.

MATERIALS AND METHODS

Traditional NIR Training Spectra Collection. The etha-
nol was reagent grade, obtained from AAPER (Shelbyville,

Fig. 1. A set of training spectra collected over multiple wavelengths yields factor loadings that are greatest where the spectra have greatest

variability (left). MFC rationally selects molecular filter materials to match the factor loadings and perform a factor analysis procedure like

principal component analysis in the the spectrometer (right).
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KY). The water was distilled in house. Quantitative mixtures
of alcohol and water were prepared by volume using grade-A
volumetric flasks and burettes. Twenty samples were pre-
pared with ethanol concentrations ranging from 0 to 14%.
Sample solutions were placed in a quartz cuvette with a path
length of 1 mm. Conventional near-infrared transmission
spectra for comparison with MFC were collected using a
dispersive spectrometer (Ocean Optics NIR256 temperature-
regulated NIR, Dunedin, FL) over the wavelength range of
900–2,500 nm to acquire a total of 256 data points per
spectrum. Data analysis was limited to 1,400–2,200 nm to
avoid the short wavelength region, which was not used for
the MFC tests. As a result, the selected transmission spectra
included 128 data points. The sample temperature remained
constant at 25-C during the data collection period. Each
recorded spectrum was the average of ten scans, with the
total integration time ca. one second. The transmission

spectra are shown in Fig. 2a. To calculate the required
composition of MFC filters for ethanol determinations, full
spectra of ethanol/water mixtures over the wavelength range
of interest must be available. For maximum accuracy, these
spectra must represent the optical characteristics of the MFC
spectrometer, not the conventional instrument. As a result,
the transmission spectra of the dispersive spectrometer were
convolved with the transmission spectra of a 1,400-nm long
pass filter, the emission spectrum of the tungsten NIR source,
and the response curve of the InGaAs photodiode in the
prototype instrument to give a corrected representation of
the MFC instrument response. These corrected transmission
spectra were used as training spectra for MFC filters
selection and multivariate analysis. The corrected spectra
are presented in Fig. 2b.

MFC-based High Throughput NIR Spectrometer. A
graphic representation of the instrumental setup is given in
Fig. 3. A 12 V, 100 W tungsten-halogen broadband source
(model 621, McPherson Inc., Chelmsford, MA) with 1,400-nm
long pass filter (Thorlabs, Newton, NJ) was used as the source
of broadband NIR light. The tungsten-halogen light source has
more intense radiation in the shorter NIR wavelength region.
To avoid saturating the detector with short wavelength NIR
radiation that contains little chemical information about the
samples, the 1,400 nm long pass filter was used to block the
short wavelength radiation. The source beam was modulated
with an optical chopper (Model SR540, Stanford Research
Systems Inc., Sunnyvale, CA) at a frequency of 280 Hz. The
light beam was focused onto an InGaAs photodiode (Fer-
mionics Opto-Technology, Simi Valley, CA) through a convex
lens after passing through the molecular filter cuvette and
sample cuvette. A step-indexed sliding cuvette tray was
constructed in-house that permitted manual selection of
cuvettes in the beam path. All cuvettes used for holding the
liquid MFC filters were 2 mm path length optical glass. The
sample cuvette had 1 mm path length. A two-factor spectrum
from a sample consisted of four data points because the positive
and negative factor loadings were represented by separate
molecular filter mixtures. Thirty-nine ethanol-in-water mix-
tures were scanned with the MFC-based spectrometer. Twenty
samples were used to calibrate the instrument and build a
multivariate linear regression prediction model, and the
remaining samples were used to validate the predictive ability
of the model. To avoid possible false responses due to
instrument drift, samples were measured in a random order.
The sample temperature was held constant at 25-C during the
data collection period. A 3-s integration was employed at each
MFC filter.

Data Analysis. All data analysis was carried out using
Matlab 7.0 (Mathworks, Inc., Natick, MA). The PLS toolbox
v3.51 for Matlab (Eigenvector Research, Inc. Wenatchee,
WA) was used for multivariate analysis. A genetic algorithm
and direct search toolbox for Matlab were used to perform
the NIR library search to generate combinations of liquids
for use as MFC filters.

Theory. As illustrated in Fig. 3, using the MFC ap-
proach, traditional bulky multi-channel wavelength selection
devices such as gratings and moving mirrors are replaced
with simple MFC filters. Only a light source, detector and
MFC filters are needed to construct a minimal MFC-based
spectrometer. The weighted combination of spectral res-

Fig. 2. (a) Raw, uncorrected transmission spectra of 20 ethanol /

water mixtures acquired on a conventional dispersive NIR spectrom-

eter. (b) Corrected spectral response function. These data are based

on the transmission spectra in Fig. 2a, convolved with following

radiometric vectors: radiance spectrum of tungsten light source, the

transmission spectrum of 1,400 nm long pass filter, and the response

curve of the InGaAs photodiode.
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ponses from the filters is designed to match the regression
vector from transmission spectra-based factor methods like
PCR or PLS calibration. Because a multivariate regression
vector can be positive or negative while all transmission
spectra of MFC filters are positive, two distinct MFC filters
are employed to represent accurately the multivariate
regression vector. Depending on the complexity of the
regression vector and availability of MFC filter materials,
an exact match of the regression vector to the filter might be
very difficult. Fortunately, an exact match is not absolutely
necessary, for reasons that are addressed in MFC filters
selection. For each MFC filter, the signal produced at the
detector is a dot product of the filter transmission spectrum
and the sample transmission spectrum, with a signal offset
vOffset in practice (24).

vvout ¼ G� s!� f
!þ voffset ð1Þ

vout is the output voltage, G is the constant amplifier gain, , f

represents the MFC filter spectrum vector, and s represents
the corrected sample spectrum vector.

For m samples and n filters, Vout (m by n) is output
voltage matrix.

Vout ¼ G� SFT þ Voffset ð2Þ
where F (n by k) is the transmission spectra matrix of MFC
filters, and S (m by k) is transmission spectra matrix of
samples.

The vector of concentration values, Y (m by 1), of the
training samples are predicted by multivariate linear regres-
sion (MLR) according to Eq. 3:

bYY ¼ VoutC þ E ¼ G� SFT C þOffset ð3Þ

where C (n by 1) are the regression coefficients, E is a scalar,
m is the number of training samples, and n is the number of
MFC filters.

After MFC filters were selected and the regression
coefficients R obtained,

R ¼ FT C ð4Þ
this R works in a similar fashion to PCR loadings.

byyi ¼ G� SiF
TC þ offset ¼ G� SiRþ offset ð5Þ

For m training samples, the root-mean-square error of
calibration (RMSEC) (27) is

RMSEC ¼
X

m

i¼1

byyi � yið Þ2

m

" #1=2

¼
X

m

i¼1

G� SiRþ offset � yið Þ2

m

" #1=2

ð6Þ

The minimum RMSEC is reached by searching a NIR
spectral library to select the best molecules for MFC filters.
G and offset are the parameters adjusted after the MFC
filters have been chosen. While one could select MFC filter
molecules to match a regression vector that provides a fixed
RMSEC specified a priori, searching the NIR library to find a
combination of MFC filters that minimizes the RMSEC is
usually more desirable. A perfect spectral match may require
a large number of different filters molecules or filter
molecules that are not available in the library.

Spectral Region Selection. Theoretically, the MFC-based
spectrometer approach should function in any spectral region
where molecular filters are available. For this research, the
NIR spectral region was used because NIR spectrometry is a
widely employed PAT and ethanol has a significant absor-
bance between two water absorbance bands in the NIR
region between 1,400 and 2,200 nm.

Radiometric Correction. The multivariate prediction of
analyte concentration using MFC is inherently radiometric in
nature. Radiometric measurement is based on a detector
response that is directly related to sample transmission
instead of absorbance. Of course, sample concentration is
linearly related to absorbance when Beer_s law holds and
transmission is logarithmically related to sample concentra-
tion. In a low absorbance regime, transmission relates to
concentration approximately linearly, however, in a higher
absorbance regime, the nonlinear relationship between
concentration and transmission predominates. To model both
regimes in transmission mode, extra principal components or
latent variables have to be used in a linear multivariate
calibration model (31).

Fig. 3. A graphical representation of the MFC-based high throughput spectrometer.
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Before using transmission spectra to perform a library
search for MFC filter constituent selection, the transmission
spectra were corrected for unique optical characteristics of
the MFC spectrometer. Data provided by manufacturers_ test
sheets were used to form the correction factors. In the
experimental MFC system, the radiometric correction was
performed by convolving the transmission spectra with the
emission spectrum of the source lamp, the transmission
spectra of the 1,400 nm long pass filter, and the response
curve of the InGaAs photodiode in the prototype instrument.
Thus, the corrected transmission spectra represented an
unbiased detector response as a function of wavelength.
The corrected spectra in Fig. 2b revealed that the transmis-
sion of the spectrometer is not completely cut off at 1,400 nm.
The transmission of the actual 1,400-nm long pass filter
employed was approximately 25% at 1,400 nm. However, the
transmission was much lower at shorter wavelengths and was
less than 1% at 1,370 nm. Because the variation of the sample
spectra from 1,370 to 1,400 nm was small, the effects of the
slightly wider bandpass on prediction of sample composition
were negligible.

MFC Filter Selection. The chemicals chosen as MFC
filters were found by searching a library of near-IR transmission
spectra containing 1,923 compounds (Wiley). The library
consisted of two spectra of each compound collected over
slightly overlapping regions, 952–1,587 nm and 1,388–2,630 nm.
Because the coverage of the MFC system is 1,400–2,200 nm,
only the spectra from 1,388–2,630 nm were used in the library
search. Molecular factor scores were calculated from the
product of the transmission spectra from the NIR spectral
library and the corrected transmission spectra of ethanol / water
mixtures:

Um�l ¼ Sm�kLT
l�k ð7Þ

where U is the score matrix, L is the transmission spectra of
the NIR library, S is the corrected transmission spectra of
training samples, l is number of compounds in the library
(l = 1,923), m is number of training spectra (m = 20), and k is
the number of wavelength values in the spectra (k = 117). A
modified genetic algorithm (32) was used to search the score
space to find four filters that yielded a predictive model with
the lowest root mean square error of cross validation
(RMSECV). The RMSECV function was used as the fitness
function of the genetic algorithm. A genetic algorithm (GA) is
a search procedure employed in computing to find actual or
approximate solutions to optimization and search problems.
Genetic algorithms are classified as global search heuristics.
Genetic algorithms form a specific class of evolutionary
algorithms that are based on methods motivated by evolu-
tionary biology such as inheritance, mutation, selection, and
crossover (also termed recombination). Genetic algorithms are
executed as a computer simulation in which a population of
conceptual symbols (termed chromosomes, or the genotype or
the genome) of possible solutions (called individuals, crea-
tures, or phenotypes) to an optimization problem evolves in
the direction of superior solutions. Usually, solutions are
symbolized in binary, but other symbol encodings are also
feasible. The evolution usually begins from a population of
randomly generated individuals and occurs in generations. In

each generation, the fitness of each individual in the popula-
tion is assessed, multiple individuals are randomly selected
from the existing population (based on their fitness), and
adapted (recombined and perhaps mutated) to create a new
population. The new population is then employed in the
subsequent iteration of the algorithm. A typical genetic
algorithm needs two items to be specified: (a) a genetic
representation of the solution domain, and (b) a fitness
function to assess the solution domain. A fitness function is a
specific form of objective function that quantifies the optimal-
ity of a solution (i.e., a chromosome) in a genetic algorithm in
order that that individual chromosome may be ranked against
every one of the other chromosomes. Optimal chromosomes,
or at least chromosomes that are more optimal, are permitted
to breed and combine their datasets by numerous techniques,
leading to a new generation that will (with luck) be improved.
An ideal fitness function connects closely with the algorithm’s
aim, and still can be computed rapidly. Speed of calculation is
vital, because a conventional genetic algorithm must be
iterated lots of times in order to yield a practical result for a
nontrivial problem.

The genetic algorithm library search was performed 50
consecutive times. Due to the indefinite nature of the genetic
algorithm, each time the search routine produced a some-
what different MFC filter combination, but roughly the same
RMSECV. Four common chemicals were selected as molec-
ular filters: water, methanol, ethanesulfonic acid, and 2,
2-diethoxypropane. The transmission spectra of these chem-
icals are shown in Fig. 4. These four MFC filters gave an
adequate calibration model (r2 = 0.995, RMSEC = 0.229%,
RMSECV = 0.339%, p = 0.05 by f test). This result is slightly
better than a corresponding PCR calibration model based on
corrected transmission spectra (r2 = 0.993, RMSEC = 0.359%,
RMSECV = 0.551%, p = 0.05 by f test). The PCR regression
vector and simulated regression vector based on MFC filters
are both presented in Fig. 5. It is evident in Fig. 5 that these
two regression vectors do not match. The search for a
regression vector by genetic algorithm is intended to reach
a minimum on a multidimensional response surface. The
PCR regression vector is one of many such minima, and it
can be visualized as a point in a reduced orthogonal p-factor

Fig. 4. The transmission spectra of the selected MFC filters.
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space that describes a linear relationship between the spectra
and concentration. Due to the stochastic nature of the
genetic algorithm, it is possible to obtain several essentially
equivalent solutions to the optimization problem. Therefore, it is
not surprising that the regression vector generated by MFs did
not match a predefined PCR regression vector. Such a pattern
match is unnecessary. Indeed, the fact that multiple solutions
exist makes it easier to find molecular filters that are stable and
compatible with other molecules in the filter system.

RESULTS AND DISCUSSION

Analysis of Ethanol in Water Mixtures. Multivariate

Analysis of Absorbance and Transmission Spectra. In order
to compare the results of MFC measurements with the results
of multivariate analysis using a conventional spectrometer,
PCR was performed on the same training set used for
selection of MFC filters. First, the PCR calibration was
performed with corrected transmission spectra. The optimum
predictive model was defined as the model with lowest
RMSECV by leave-one-out cross validation. Four principal
components were required to build a calibration model with
optimum predictive ability. Theoretically, two principal
components should be sufficient to model the ethanol/water
mixtures. The extra principal components were included due
to the nonlinear response between the transmission spectra
and concentration. The RMSEC was 0.359%, corresponding
to 2.56% error relative to the range of the calibration set.
The four PCs model was validated by leave-one-out cross
validation, and the RMSECV was 0.551%, or 3.93% relative
to the range of the calibration set. Next, a PCR calibration
was carried out on absorbance spectra, which were calculated
from original transmission spectra (using A = 1/logT). Three
principal components were required to build an optimum
calibration model. The RMSEC was 0.309%, corresponding
to 2.20% error relative to the range of the calibration set.
The three PCs model was validated by leave-one-out cross
validation, and the RMSECV was 0.494%, or 3.53% relative
to the mean of the calibration set. Compared to the PCR

model based on corrected transmission spectra, the PCR
model based on absorbance spectra required fewer principal
components and had a slightly lower RMSEC and RMSECV.
The better performance of the model based on absorbance
spectra is expected because of the linear response between
absorbance and concentration.

Expectation from Simulation. As described in the MFC
filters selection section, the simulation study for the MFC
filters predicted a RMSEC of 0.229% and RMSECV of
0.339% with corrected transmission spectra. The result
showed that the PCR model is not necessarily the best
model. MFC filters outperform the traditional scanning PCR
model in terms of RMSECV. The simulation result in Fig. 6
shows a plot of the predicted ethanol concentrations versus
the actual ethanol concentrations using a MLR model based
on four MFC filters and a four-component PCR model based
on corrected transmission spectra.

Determination of Ethanol with the MFC Approach. The
voltage output from the detector was recorded for each of 39
samples through each MFC filter. The samples were split into
two groups for cross validation, and 20 samples were used to
calibrate the MFC-based instrument, while the other 19
samples were used as the validation dataset. The 20
calibration samples were different from those samples used
as training samples for the MFC filters selection, but were
prepared at the same nominal concentrations. Additional
calibration was necessary because the correction factors used
with the training spectra were all obtained from man-
ufacturer_s test datasheets and set-ups, and might be different
once assembled in the prototype instrument. The optimal
correlation between detector output voltage and ethanol
concentration were obtained by following equation.

bYY ¼

vout 1;1½ �vout 1;2½ �vout 1;3½ �vout 1;4½ �

. . . . . . . . .

. . . . . . . . .

vout m;1½ �vout m;2½ �vout m;3½ �vout m;4½ �

2

6

6

6

6

4

3

7

7

7

7

5

�28; 567

�14; 368

27; 997

21; 164

2

6

6

6

4

3

7

7

7

5

� 34 ð8Þ

Where bYY was the predicted ethanol concentration, and
vout was the voltage output of each sample for each MFC
filter. The RMSEC of the model was 0.748%, and the
RMSEP by data splitting was 0.735%. Fig. 7 shows a plot of
predicted ethanol concentrations versus actual ethanol con-
centrations of all 39 samples.

The estimated RMSEP (0.735%) of the MFC-based
measurement was not as good as the RMSEP (0.339%)
predicted by the simulation. Still, the actual MFC result
shows that the MFC instrument is able to produce a useful
numerical concentration result. The difference between the
simulated instrument and the actual instrument results was
due to several factors:

1. Sampling noise arose from the positioning of molec-
ular filter cuvettes and/or sample cuvettes that did not
exist in the simulation.

2. The transmission spectra in the NIR library were
obtained with a path length of 2.5 mm, while cuvettes
with a path length of 2 mm were used as MFC filters
in the prototype instrument. The difference in the
profile of transmission spectra due to the different
path length likely increased prediction error.

Fig. 5. The regression vectors versus wavelength. The solid line

shows the PCR regression vector, and the dashed line shows the

regression vector based on MLR calibration of the MFC filter.
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3. Instrumental limitations prevented obtaining the
exact transmission spectrum of the 1,400 nm long
pass filter, the emission spectrum of the light source,
and the detector response curve in the prototype
MFC-based instrument to correct the training trans-
mission spectra. Alternative correction factors were
obtained from manufacturers_ datasheets. Better
results might be expected if each individual optical
component in the prototype instrument were carefully
calibrated.

4. Although an optical chopper and lock-in-amplifier
were used to reduce noise and thermal drift, the
MFC-based prototype instrument was shown to have
a significant instrument drift. Simple studies with the
light source (e.g. 1,400 nm long pass filter in place but
without MFC chemicals or sample cell present)
exhibited signal drift as high as 4% relative over
20 min, which was roughly the time required to scan
all 39 samples in the MFC instrument. This significant
drift could contribute to the high RMSEP. Future
studies will utilize a double-beam design to eliminate
this drift.

5. Using the genetic algorithm-based MFC filters selec-
tion algorithm, only the predictive ability of the MLR
model was considered in the fitness function. The
sensitivity of each individual MFC filter to changes in
ethanol concentration was not taken into account.
PCR is a regression method based on orthogonal
principal components that maximize variance. How-
ever, MLR only aims to minimize the sum of the
squared errors, and variance maximization for depen-
dent variables is not taken into account. Therefore,
the genetic algorithm-based MFC filters selection
could select MFC filters with high prediction ability
but low sensitivity, which results a hypothetical low
RMSEP in the simulation study that is difficult to

achieve with real, physical filters. (A new search
algorithm that takes both prediction and sensitivity
into account is currently being investigated.)

In addition to the multivariate regression model for
ethanol concentration, an estimate of the detection limit for
binary mixtures of ethanol and water was also calculated.
The estimate was based on an extension of the BEST metric
for sub-cluster detection with sample populations that has
been described previously (33,34). The experimental MFC
data were then analyzed to estimate the limits of detection of
each component in binary mixtures of two components. This
was performed by translating the sample population mean of
1% ethanol in water sample towards pure water sample
population_s mean until the two clusters could not be
differentiated using the BEST subcluster detection algorithm.
The estimate of the detection limit for ethanol in water
determined by this procedure is 0.26%. The dynamic range
for ethanol detection by MFC was a factor of 57. The
extended BEST metric provided lower errors than traditional
regression approaches because it took both changes in
sample cluster location as well as scale into account.
However, to achieve its better results the extended BEST
requires multiple replicates of the same sample, which can be
impractical in real-life remote sensing applications.

In order to assess of the long-term stability of molecular
filters, the molecular filters were directly exposed to the
near-IR light beam for 10 h. For each of those four molecular
filters, the signal was continually monitored and variations in
signal level of 4% were observed in this study (the same
range as the variation in the light source intensity). The
molecular filters were also sealed in cuvettes over two-month
period, and there appeared no visible degradation of these
molecular filters over that time. It is worth noting that, for
some other molecular filters that were not used in this study,
severe degradation of MFs can be observed. Thus, it is
necessary to compile a spectral library using only stable
molecules for MFC.

Fig. 7. A plot of the predicted ethanol concentrations versus the

actual ethanol concentrations of all 39 samples. Diamonds: calibra-

tion samples, r2 = 0.968, RMSEC = 0.748%. Crosses: validation

samples, RMSEP = 0.735%. Significant at p = 0.05 by f test.

Fig. 6. A plot of the predicted ethanol concentrations versus the

actual ethanol concentrations using a MLR model based on 4

simulated MFC filters and a PCR model based on corrected

transmission spectra. Stars: PCR model based on corrected transmis-

sion spectra, RMSEC = 0.359%, RMSECV = 0.551%. Circles: MLR

model based on four simulated MFC filters, RMSEC = 0.229%,

RMSECV = 0.339%.
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The susceptibility of MFC-based spectroscopic measure-
ment to complex matrix interference in samples is not well
understood. Theoretically, the MFC-based instrument should
be able to precisely measure the specific chemical species of
interest as long as the potential interferences were introduced
and modeled in the training set. Future research will include
determination of ethanol containing other alcohols as inter-
ferences that are not in the training set to evaluate the
susceptibility of MFC to this sort of interference.

CONCLUSION

A prototype MFC-based spectrometer was designed,
constructed, and tested for the analysis of ethanol-in-water
mixtures. The concept of molecular factor computing was
demonstrated. The results obtained from an MFC-based
measurement were compared to PCR calibration based on
conventional scanning spectrometry. Although the actual
results from MFC-based prediction in the first prototype
were slightly worse than from conventional PCR prediction,
the MFC simulation study suggested that a better prediction
model could be built based on MFC. A double-beam MFC
instrument under construction may achieve the superior
results predicted by the simulation. Advantages of the MFC
approach over conventional spectroscopy include significant-
ly reducing the computational demand (the integrated
sensing and processing, or ISP, advantage), shorter data
collection and analysis time with higher signal-to-noise ratio
(S/N) (especially for imaging spectrometry, through the
Fellgett advantage), higher optical throughput (the Jacquinot
advantage), and more rugged instrumentation with a consid-
erably lower cost. The high optical throughput of an MFC
system could offer improved analytical ability in systems with
a weak signal.

Problems with reproducibility in positioning of filter
cuvettes and samples cuvettes increased measurement noise
in the MFC-based prototype spectrometer. The effect will be
reduced by using aperture control and through better design
of slides for holding filters and samples.

A new library search algorithm should be developed to
select the optimal MFC filters. Prediction ability and
sensitivity of MFC filters both should be taken into account
in the fitness function of genetic algorithm-based searches.

The number of potential filter materials is huge.
Solutions and solid-state mixtures could both be used as
molecular filters. The use of organic solvents as MFC filters
introduces some ruggedness problems for process analysis.
To simplify the instrument and improve the system stability,
solid-state MFC filters constructed from materials such as
polymers may offer a good alternative to liquid filters (10).

MFC offers users a simpler ISP instrument with signif-
icant reduction of computational complexity and processing
time at the cost of some experimental flexibility. In other
words, MFC-based instruments are not general-purpose
research tools. Instead, the MFC approach is for practical
measurement in the real world where fast results are needed
and achieved by integrating the processing into the sensing
stage.

In addition to applications of this technique as a process
analytical technology (PAT), MFC-based remote NIR imag-
ing for real-time surveillance has gained interest. A MFC-
based NIR imaging system for remote ethanol sensing is
currently under construction in our laboratory. The range of
possible applications is likely to expand when imaging
systems are available.
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